Image Representations Learned With Unsupervised Pre-Training Contain Human-like Biases

Ryan Steed ¹ Aylin Caliskan ² February 10, 2021

¹Carnegie Mellon University

²George Washington University

ACM FAccT 2021

systematic bias in unsupervised computer vision

systematic bias in unsupervised computer vision

Outline

systematic bias in unsupervised computer vision representational harms

downstream harms

Outline

systematic bias in unsupervised computer vision representational harms downstream harms

systematic bias in unsupervised computer vision grounded in social psychology 2 models, 31 tests (including intersectional bias)

systematic bias in unsupervised computer vision

grounded in social psychology

2 models, 31 tests (including intersectional bias)

The man worked as...

> a car salesman at the local Wal-Mart

The woman worked as...

> a prostitute under the name of Hariya

Example text generation with GPT-2 (Radford et al., 2019) reproduced from Sheng et al. (2019).

The man worked as...

> a car salesman at the local Wal-Mart

The woman worked as...

> a prostitute under the name of Hariya

Example text generation with GPT-2 (Radford et al., 2019) reproduced from Sheng et al. (2019).

$\label{eq:pre-training:natural language} \rightarrow \text{computer vision}$

$\label{eq:pre-training:natural language} \rightarrow \textit{computer vision}$

(Russakovsky et al., 2015)

SimCLRv2

Is there evidence of systematic bias in image representations learned with unsupervised pre-training?

Implicit Association Test (IAT)

(Greenwald et al., 1998)

- Tests for differential association of two concepts
- Easier to categorize stereotype-congruent pairs
- Harder to categorize
 stereotype-incongruent pairs
- Effect d = difference in reaction time

Category	Items
Harmless Objects	🌆 🔩 🍝 📔 🥂 🛋
Weapons	r 🗠 🖦 🥆 🦯
Black Americans	To To To To To
White Americans	6

Weapon IAT (implicit.harvard.edu)

Implicit Association Test (IAT)

(Greenwald et al., 1998)

- Tests for differential association of two concepts
- Easier to categorize stereotype-congruent pairs
- Harder to categorize
 stereotype-incongruent pairs
- Effect d = difference in reaction time

Weapon IAT (implicit.harvard.edu)

Implicit Association Test (IAT)

(Greenwald et al., 1998)

- Tests for differential association of two concepts
- Easier to categorize stereotype-congruent pairs
- Harder to categorize
 stereotype-incongruent pairs
- Effect d = difference in reaction time

Weapon IAT (implicit.harvard.edu)

Implicit Association Test (IAT)

(Greenwald et al., 1998)

- Tests for differential association of two concepts
- Easier to categorize stereotype-congruent pairs
- Harder to categorize
 stereotype-incongruent pairs
- Effect d = difference in reaction time

Greenwald et al. (1998)

Word Embedding Association Test (Caliskan et al., 2017)

Word Embedding Association Test (WEAT) (Caliskan et al., 2017)

 $s(w, A, B) = \text{mean}_{a \in A} \cos(w, a) - \text{mean}_{b \in B} \cos(w, b)$

$$s(X, Y, A, B) = \sum_{x \in X} s(x, A, B) - \sum_{y \in Y} s(y, A, B)$$

Image Embedding Association Test (iEAT)

$$s(X, Y, A, B) = \sum_{x \in X} s(x, A, B) - \sum_{y \in Y} s(y, A, B)$$

 $s(w, A, B) = \text{mean}_{a \in A} \cos(w, a) - \text{mean}_{b \in B} \cos(w, b)$

 \Rightarrow Effect size d, p-value p

Image Embedding Association Test (iEAT) $s(X, Y, A, B) = \sum_{x \in X} s(x, A, B) - \sum_{y \in Y} s(y, A, B)$ $s(w, A, B) = \text{mean}_{a \in A} \cos(w, a) - \text{mean}_{b \in B} \cos(w, b)$

 \Rightarrow Effect size *d*, p-value *p*

Image Embedding Association Test (iEAT) $s(X, Y, A, B) = \sum_{x \in X} s(x, A, B) - \sum_{y \in Y} s(y, A, B)$ $s(w, A, B) = \text{mean}_{a \in A} \cos(w, a) - \text{mean}_{b \in B} \cos(w, b)$

 \Rightarrow Effect size d, p-value p

- Replicated 14 IATs including 3 picture-only IATs & 5 mixed-mode IATs
- \cdot Used the same stimuli as the original IATs (Greenwald et al., 2003)
- Collected multiple exemplars for each stimuli data @ (bsteed.com/leat
 - Original IAT (if available)
 - CIFAR-100 (Krizhevsky, 2009) (if available)
 - 🕐 Google Image Search 💽

- Replicated 14 IATs including 3 picture-only IATs & 5 mixed-mode IATs
- Used the same stimuli as the original IATs (Greenwald et al., 2003)
- Collected multiple exemplars for each stimuli data @ rbsteed.com/ieat
 - Original IAT (if available)
 - CIFAR-100 (Krizhevsky, 2009) (if available)
 - 🕐 Google Image Search 💽

- Replicated 14 IATs including 3 picture-only IATs & 5 mixed-mode IATs
- Used the same stimuli as the original IATs (Greenwald et al., 2003)
- Collected multiple exemplars for each stimuli (data @ rbsteed.com/ieat
 - Original IAT (if available)
 - · CIFAR-100 (Krizhevsky, 2009) (if available)
 - Google Image Search search terms @ rbsteed.com/ieat

- Replicated 14 IATs including 3 picture-only IATs & 5 mixed-mode IATs
- Used the same stimuli as the original IATs (Greenwald et al., 2003)
- Collected multiple exemplars for each stimuli (> data @ rbsteed.com/ieat
 - Original IAT (if available)
 - CIFAR-100 (Krizhevsky, 2009) (if available)
 - Google Image Search + search terms @ rbsteed.com/ieat

- Replicated 14 IATs including 3 picture-only IATs & 5 mixed-mode IATs
- Used the same stimuli as the original IATs (Greenwald et al., 2003)
- Collected multiple exemplars for each stimuli (> data @ rbsteed.com/ieat
 - Original IAT (if available)
 - · CIFAR-100 (Krizhevsky, 2009) (if available)
 - Google Image Search
 search terms @ rbsteed.com/ieat

9 valence IATs (e.g. Flower, Insect vs. Pleasant, Unpleasant)

pleasantness	imagery	
		Constant of the other
		1

Bellezza et al. (1986)

9 valence IATs (e.g. Flower, Insect vs. Pleasant, Unpleasant)

pleasantness	imagery	
4.51	4.82	
4.68	4.75	-
:	÷	
1.51	4.44	
1.50	3.89	
	pleasantness 4.51 4.68 : 1.51 1.50	pleasantness imagery 4.51 4.82 4.68 4.75 . . 1.51 4.44 1.50 3.89

Bellezza et al. (1986)

8

8

Testing 3 hypotheses from social psych (Ghavami and Peplau, 2013):

• Race: racial bias \sim male \times race bias

slack (Unpleasant)

- *Gender*: gender bias ~ White × race bias
- Intersectionality: emergent race × gender biases

Results: intersectional bias

Testing 3 hypotheses from social psych (Ghavami and Peplau, 2013):

 Race: racial bias ~ male × race bias Aan (Unpleasant)

- Gender: gender bias \sim White \times race bias
- Intersectionality: emergent race × gender biases

Woman/Man vs. Pleasant/Unpleasant

Our results

Results: intersectional bias

Testing 3 hypotheses from social psych (Ghavami and Peplau, 2013):

 Race: racial bias ~ male × race bias Aan (Unpleasant)

- Gender: gender bias ~
 White × race bias
- *Intersectionality*: emergent race × gender biases

Woman/Man vs. Pleasant/Unpleasant

Results: intersectional bias

Testing 3 hypotheses from social psych (Ghavami and Peplau, 2013):

- Race: racial bias \sim male \times race bias
- Gender: gender bias ~
 White × race bias
- Intersectionality: emergent race × gender biases

Pre-trained on

Sourced from the internet (Russakovsky et al., 2015)

flickr

Where does this bias come from?

- ImageNet categories unequally represent race & gender (Yang et al., 2020)
- Datasets scraped from Flickr portray gender unequally across categories (Wang et al., 2020; Prabhu and Birhane, 2020)

Where does this bias come from?

- ImageNet categories unequally represent race & gender (Yang et al., 2020)
- Datasets scraped from Flickr portray gender unequally across categories (Wang et al., 2020; Prabhu and Birhane, 2020)

From Wang et al. (2020): frequency of gender appearances by category in COCO (Lin et al., 2014).

Where does this bias come from?

- ImageNet categories unequally represent race & gender (Yang et al., 2020)
- Datasets scraped from Flickr portray gender unequally across categories (Wang et al., 2020; Prabhu and Birhane, 2020)

From Prabhu and Birhane (2020)'s dataset audit card for ImageNet 2012, gender skew in human co-occurrences with several "dog" subclasses.

Image completion with iGPT, pre-trained on ImageNet. From Chen et al. (2020).

Image completion with iGPT, pre-trained on ImageNet. From Chen et al. (2020).

Completion of an artificial male face with iGPT, pre-trained on ImageNet.

Completion of an artificial male face with iGPT, pre-trained on ImageNet Of 40 completions of 5 faces, 42.5% feature suits & career attire.

Completion of artificial female faces with iGPT, pre-trained on ImageNet.

Completion of artificial female faces with iGPT, pre-trained on ImageNet Of 40 completions of 5 faces, 52.5% feature bikinis or low-cut tops.

- + Limitations \rightarrow future work
 - Larger, newer, & proprietary models/datasets, e.g. Dosovitskiy et al. (2021)
 - Extend to new, non-binary categories
 - · Formalize/document connections to task-specific behavior
- Greater (pre-)caution developing unsupervised CV
 - · Consider and catalogue representation in data collection
 - Extensive auditing for representational harms
 - · Value-sensitive design (Friedman et al., 2008)

- · Larger, newer, & proprietary models/datasets, e.g. Dosovitskiy et al. (2021)
- Extend to new, non-binary categories
- · Formalize/document connections to task-specific behavior
- \cdot Greater (pre-)caution developing unsupervised CV
 - · Consider and catalogue representation in data collection
 - Extensive auditing for representational harms
 - · Value-sensitive design (Friedman et al., 2008)

$\cdot \ \mbox{Limitations} \rightarrow \mbox{future work}$

- Larger, newer, & proprietary models/datasets, e.g. Dosovitskiy et al. (2021)
- Extend to new, non-binary categories
- Formalize/document connections to task-specific behavior
- Greater (pre-)caution developing unsupervised CV
 - · Consider and catalogue representation in data collection
 - Extensive auditing for representational harms
 - · Value-sensitive design (Friedman et al., 2008)

- Larger, newer, & proprietary models/datasets, e.g. Dosovitskiy et al. (2021)
- Extend to new, non-binary categories
- · Formalize/document connections to task-specific behavior
- Greater (pre-)caution developing unsupervised CV
 - Consider and catalogue representation in data collection
 - · Extensive auditing for representational harms
 - · Value-sensitive design (Friedman et al., 2008)

- Larger, newer, & proprietary models/datasets, e.g. Dosovitskiy et al. (2021)
- Extend to new, non-binary categories
- · Formalize/document connections to task-specific behavior
- Greater (pre-)caution developing unsupervised CV
 - Consider and catalogue representation in data collection
 - Extensive auditing for representational harms
 - Value-sensitive design (Friedman et al., 2008)

- Larger, newer, & proprietary models/datasets, e.g. Dosovitskiy et al. (2021)
- Extend to new, non-binary categories
- · Formalize/document connections to task-specific behavior
- \cdot Greater (pre-)caution developing unsupervised CV
 - Consider and catalogue representation in data collection
 - Extensive auditing for representational harms
 - Value-sensitive design (Friedman et al., 2008)

Questions? ryansteed@cmu.edu

rbsteed.com/ieat

▶ paper → code

Acknowledgements

my co-author Aylin Caliskan, many reviewers, & NIST

References i

- Bellezza, F. S., A. G. Greenwald, and M. R. Banaji (1986, 5). Words high and low in pleasantness as rated by male and female college students. *Behavior Research Methods, Instruments, & Computers 18*(3), 299–303.
- Caliskan, A., J. J. Bryson, and A. Narayanan (2017). Semantics Derived Automatically from Language Corpora Contain Human-like Biases. Technical Report 6334, Science.
- Chen, M., A. Radford, R. Child, J. Wu, H. Jun, D. Luan, and I. Sutskever (2020, 1). Generative Pretraining From Pixels. In H. D. III and A. Singh (Eds.), *Proceedings of the 37th International Conference on Machine Learning*, Volume 119 of *Proceedings of Machine Learning Research*, pp. 1691–1703. PMLR.
- Dosovitskiy, A., L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby (2021). An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In *International Conference on Learning Representations*.

References ii

- Friedman, B., P. H. Kahn, and A. Borning (2008). Value sensitive design and information systems. *The handbook of information and computer ethics*, 69–101.
- Ghavami, N. and L. A. Peplau (2013). An intersectional analysis of gender and ethnic stereotypes: Testing three hypotheses. *Psychology of Women Quarterly 37*(1), 113–127.
- Greenwald, A. G., D. E. McGhee, and J. L. Schwartz (1998, 6). Measuring Individual Differences in Implicit Cognition: The Implicit Association Test. *Journal of Personality and Social Psychology* 74(6), 1464–80.
- Greenwald, A. G., B. A. Nosek, and M. R. Banaji (2003, 8). Understanding and Using the Implicit Association Test: I. An Improved Scoring Algorithm. *Journal of Personality and Social Psychology 85*(2), 197–216.
- Krizhevsky, A. (2009). Learning multiple layers of features from tiny images. Technical report, University of Toronto.

References iii

- Lin, T.-Y., M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick (2014). Microsoft coco: Common objects in context. In *European conference on computer vision*, pp. 740–755.
- Nosek, B. A., A. G. Greenwald, and M. R. Banaji (2007). The Implicit Association Test at Age 7: A Methodological and Conceptual Review. In J. A. Bargh (Ed.), *Automatic processes in social thinking and behavior*, Chapter 6, pp. 265–292. Psychology Press.
- Prabhu, V. U. and A. Birhane (2020). Large image datasets: A pyrrhic win for computer vision? *arXiv* preprint arXiv:2006.16923.
- Radford, A., J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever (2019). Language models are unsupervised multitask learners. *OpenAI Blog* 1(8), 9.
- Russakovsky, O., J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
 M. Bernstein, A. C. Berg, and L. Fei-Fei (2015, 12). ImageNet Large Scale Visual Recognition
 Challenge. International Journal of Computer Vision 115(3), 211–252.

References iv

- Sheng, E., K.-W. Chang, P. Natarajan, and N. Peng (2019). The woman worked as a babysitter: On biases in language generation. *arXiv preprint arXiv:1909.01326*.
- Wang, A., A. Narayanan, and O. Russakovsky (2020). REVISE: A Tool for Measuring and Mitigating Bias in Visual Datasets. In *European Conference on Computer Vision*.
- Yang, K., K. Qinami, L. Fei-Fei, J. Deng, and O. Russakovsky (2020). Towards Fairer Datasets: Filtering and Balancing the Distribution of the People Subtree in the ImageNet Hierarchy. In *Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency,* FAT* '20, New York, NY, USA, pp. 547–558. Association for Computing Machinery.

Replicating IATs

IAT from (Nosek et al., 2007)	Х	Υ	Α	В	d
Baseline					
Insect-Flower	Flower	Insect	Pleasant	Unpleasant	1.35
Stereotype					
Asian*	European American	Asian American	American	Foreign	0.62
Gender-Career	Career	Family	Male	Female	1.10
Gender-Science	Science	Liberal Arts	Male	Female	0.93
Native*	European American	Native American	U.S.	World	0.46
Weapon*	White	Black	Tool	Weapon	1.00
Valence					
Age [†]	Young	Old	Pleasant	Unpleasant	1.23
Arab-Muslim	Other	Arab-Muslim			0.33
Disability [†]	Disabled	Abled			1.05
Race [†]	European American	African American			0.86
Religion	Christianity	Judaism			-0.34
Sexuality	Gay	Straight			0.74
Skin-Tone [†]	Light	Dark			0.73
Weight [†]	Thin	Fat			0.83

 * Visual mode (image-only stimuli). † Mixed-mode (image and verbal stimuli).