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Policy impacts of statistical  
uncertainty and privacy  
Reforms could help funding formulas address unequal  
distribution of uncertainty from data error and privacy protections  
By Ryan Steed,1 Terrance Liu,2 Zhiwei Steven Wu,2 Alessandro Acquisti1 

Differential privacy (1) is an increasingly popu-
lar tool for preserving individuals’ privacy by 
adding statistical uncertainty when sharing 
sensitive data. Its introduction into U.S. Census 
Bureau operations (2), however, has been con-
troversial. Scholars, politicians, and activists 
have raised concerns about the integrity of cen-
sus-guided democratic processes, from redis-
tricting to voting rights. The debate raises im-
portant issues, yet most analyses of trade-offs 
around differential privacy overlook deeper un-
certainties in census data (3). To illustrate, we 
examine how education policies that leverage 
census data misallocate funding due to statisti-
cal uncertainty, comparing the impacts of 
quantified data error and of a possible differen-
tially private mechanism. We find that misallo-
cations due to our differentially private mecha-
nism occur on the margin of much larger 
misallocations due to existing data error that 
particularly disadvantage marginalized groups. 
But, we also find that policy reforms can reduce 
the disparate impacts of both data error and 
privacy mechanisms. 
     Differential privacy is the cornerstone of 
Census Bureau’s updated disclosure avoidance 
system (DAS) (2). Designed to rigorously pre-
vent reconstruction, re-identification, and 
other attacks on personal data, differential pri-
vacy formally guarantees that published statis-
tics are not sensitive to the presence or ab-
sence of any individual’s data by injecting 
transparently structured statistical uncertainty 
(noise) (1). But even before differential privacy 
is applied, estimates from the Decennial Cen-
sus, surveys like the American Community Sur-
vey (ACS), and other Census Bureau data prod-
ucts used for critical policy decisions already 
contain many kinds of statistical uncertainty, in-
cluding sampling, measurement, and other 
kinds of non-sampling error (4). Some amount 
of those errors are quantified, but numerous 
forms of error are not (5), including some non-
responses, misreporting, collection errors, and 

even hidden distortions introduced by previous 
disclosure avoidance measures such as data 
swapping (6). If quantified and unquantified er-
rors alike are not acknowledged and accounted 
for, policies that rely on census data sources 
may not distribute the impacts of uncertainty 
equally. 

In 2021, the U.S. federal government ap-
propriated over $16.5 billion in Title I funds (in-
cluding several special grants not analyzed 
here) to distribute to over 13,000 local educa-
tion agencies (LEAs)—typically school dis-
tricts—using a formula that takes as input cen-
sus estimates of the number of children and 
children in poverty. School districts qualify for 
Title I grants based on the number or share of 
children in poverty (7). However, the formula 
does not account for deviations in the poverty 
estimates that could cause misallocations—
cases where the funding amount allocated to a 
school district differs from its entitlement in an 
imaginary (3), noise-free world. 

Researchers have recognized Title I an im-
portant case study of policy-relevant privacy-
utility trade-offs (9), including misallocation af-
ter noise injection for differential privacy (10). 
We extend this work by comparing the policy 
impacts of noise injected for privacy to the im-
pacts of existing statistical uncertainty, contex-
tualizing preliminary error analyses by Census 
Bureau scientists (2). Our results empirically in-
vestigate analytical predictions and proposals 
from previous work on statistical estimation 
and federal funding formulas (11, 12, 13).  

We focus specifically on the way Title I im-
plicitly concentrates the negative impacts of 
statistical uncertainty on marginalized groups. 
Weakening privacy protection will do little to 
help the most vulnerable—for these communi-
ties, participating in a census survey can be es-
pecially risky, despite the benefits of voting 
rights protection and school funding. Histori-
cally, abuse of census data facilitated intern-
ment of Japanese Americans and other injus-
tices (3). Today, a parent with a restrictive lease 
may not mention their children to a census 
worker because they fear being kicked out by 
their landlord if their responses are re-identi-
fied (14). 

 

SIMULATING NOISE IN TITLE  I ALLOCATIONS 
Prior work on differential privacy in the context 
of Title I is purely analytical, analyzes abstracted 
components of funding formulas, or focuses 
only on basic grants (9, 10).  In contrast, we fully 
replicate the Title I provisions for allocating 
more than $11.6 billion in basic, targeted, and 
concentration grants using the same data 
sources and procedures as the Department of 
Education, which is responsible for calculating 
the official Title I grant amounts each year (7).  
We measure the impact of data and privacy de-
viations on the 2021 allocations to 13,190 LEAs 
across the United States. The primary data in-
put is the Census Small Area Income and Pov-
erty Estimates (SAIPE) from 2019—a table of 
counts of total population, children, and chil-
dren in poverty in school districts from all fifty 
states (excluding Puerto Rico and other territo-
ries) that incorporates weighted survey esti-
mates from the ACS (see supplementary mate-
rials (SM) §2 for  details).  

In a given year, the SAIPE may vary due to a 
variety of sources of error, including relative er-
ror in the county-level estimate, error from 
other data sources used (e.g., tax data), and er-
rors from raking and recombination methods 
used to convert county estimates to school dis-
trict estimates (4). To simulate the effects of 
these “data deviations”—quantified data er-
rors (8)—we generate alternative poverty esti-
mates for each school district from a normal 
distribution around the published estimate of 
children in poverty in that district from the 
2019 SAIPE, following prior work and Census 
Bureau guidance (4) (SM §2). 

We then add “privacy deviations”—noise 
deliberately injected to achieve differential pri-
vacy. The Census Bureau has not yet an-
nounced any concrete plans for updated disclo-
sure avoidance in the ACS, and the SAIPE 
currently does not inject noise for privacy on 
top of its inputs. To illustrate how privacy devi-
ations might affect these and similar products, 
and to guide policymakers as the Census Bu-
reau develops new disclosure avoidance 
measures, we follow prior work (9, 10) in apply-
ing the Laplace mechanism, a commonly used 
noise-injection procedure which is provably dif-
ferentially private (1). Our hypothetical 
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mechanism does not include the complex post-
processing applied to the discrete Gaussian 
mechanism used in the Decennial Census; we 
only round negative numbers to zero (2).  

The strength of differential privacy (de-
scribed by the parameter 𝜖) determines the 
magnitude of privacy deviations (lower 𝜖 im-
plies stronger privacy and generally more 
noise). 𝜖 measures how much an individual’s 
decision to respond to a census survey in-
creases their risk of unwanted disclosure.  It is 
not yet clear whether or how privacy deviations 
would be added to a statistical product like the 
SAIPE in practice, and because the SAIPE incor-
porates weighted survey estimates from the 
ACS, its sensitivity to changes in an individual’s 
response is unclear. Instead, we try several rea-
sonable privacy settings to provide an upper 
bound on the magnitude of privacy deviations 
that might be added in practice (9) (SM §2). We 
focus on 𝜖 = 0.1 and 𝜖 = 1 (SM §7 addition-
ally varies 𝜖 from 0.001 to 10). Previous work 
on Title I (9) suggests 𝜖 ≥ 2.52; many applica-
tions use similarly high values (2), while differ-
ential privacy advocates often prefer 𝜖 < 1. 

The Title I legislation includes two post-for-
mula provisions to achieve secondary policy 
goals. The "hold harmless” provision (20 U.S.C. 
§6332) limits funding losses to between 5% and 
15% per year and the “state minimum” provi-
sion (20 U.S.C. §6333) sets a formulaic floor on 
the total amount received by each state. We 
treat the allocations generated without these 
provisions as the official formula-based “enti-
tlements” for each district. Later, we compare 
these entitlements and the real allocations pro-
duced with these provisions. For each pri-
vacy setting, we compute the misallocation due 
to deviations by comparing the simulated allo-
cations after deviations to the official entitle-
ments. We repeat this procedure 1,000 times, 
drawing new data and privacy deviations in 
each trial. Our metric of group-weighted misal-
location describes the expected misallocation 
borne by the average formula-eligible child in a 
given group nationwide, assuming that misallo-
cation to a district is borne equally by all its eli-
gible students. 
 
SUBSTANTIAL MISALLOCATIONS 
Of the roughly $11.7 billion distributed nation-
wide in 2021, districts in our simulation expect 
to lose a total of $1.06 billion (summing all 
losses in each simulation, then averaging  
summed losses  across 1,000 simulations; SD = 
$0.04 billion) in entitlements to other districts 
due to the Title I formula’s handling of existing 
(before differential privacy) data deviations 
alone (Fig. 1). The standard deviation in misal-
location (computed by averaging over 1,000 tri-
als) is about $835,000 (the average district 

receives around $880,000)—$237 per student. 
When we add privacy deviations (for a rela-
tively strong privacy setting 𝜖 = 0.1), the ex-
pected total entitlement loss only increases by 
$50 million (4.7%; marginal SD = $2.9 million). 
For a less strong privacy setting (smaller privacy 
deviations; 𝜖 = 1), the increase is negligible. 
The marginal impact is small because—as in 
the 2020 Decennial Census (2)—the magnitude 
of privacy deviations is comparable to the mag-
nitude of data deviations only in the least pop-
ulous districts, even at a relatively strong pri-
vacy setting (𝜖 = 0.1) (SM §7). 

These costs are geographically asymmet-
rical. Certain population-sparse school districts, 
especially in the Northwest, benefit greatly on 
average from data deviations (SM Fig. 3a)—
their small sample sizes induce proportionally 
larger data deviations, and, because of their 
low absolute numbers of children in poverty 
(though poverty rates may still be high), they 
have more room to gain funding than to lose 
funding. Then, because the federal appropria-
tion is fixed and allocations are zero sum, more 
populous districts, especially in the Southeast, 
pay for that proportional increase in funding 
with a small “tax” (10). Less populous districts 
gain even more as they qualify for new grants 
(11) (SM Fig. 4). Notably, while less populous, 
usually rural districts gain funding on average 
from data deviations, their allocations are more 
volatile (10) (SM Fig. 7). 

When we add privacy deviations (for rela-
tively strong privacy, 𝜖 = 0.1), gains by small 
districts are even more exaggerated (SM Fig. 
3b). Unlike data deviations, where the absolute 
variance increases with population size, our pri-
vacy deviations have the same variance in 
every district, exceeding data deviations in 
magnitude only in the least populous districts. 
Still, the marginal increase in cost to districts 
due to privacy deviations is much less than the 
base-level misallocations resulting from data 
deviations, and the marginal change reduces 
total misallocation about half the time. 
 
DIVERSION FROM MARGINALIZED GROUPS 
Due to Title I’s distribution of quantified data 
deviations alone, Black students and Asian stu-
dents can expect to lose around $5 and $8 per 
eligible student respectively, while White stu-
dents gain over $2 per eligible child on average 
(Fig. 2). (The average district receives $1,120 
per eligible student.) Likewise, school districts 
with large Cuban, Puerto Rican, and other His-
panic communities expect to lose funding (be-
tween $3 and $14 per eligible student) while 
non-Hispanic districts gain (SM §4, Fig. 9). For a 
child in a particular district in an unlucky year, 
the disparity may be worse. Whether a demo-
graphic group loses funding depends on 

whether its members tend to live in high- or 
low- poverty districts. Often, this happens be-
cause the poverty rate in the group itself is high. 
Groups that tend to live in denser, usually ur-
ban districts with more children in poverty lose 
out, while groups that live in sparse, often rural 
districts with fewer children in poverty (though 
the rate of poverty may be higher) gain. Geo-
graphically concentrated groups—such as 
tribal nations or racial subgroups (SM §4)—ex-
perience more volatility in outcomes across tri-
als, which depend on the population density 
and poverty rates where they live. 

In a relatively strong privacy setting (ϵ =
0.1), our differential privacy mechanism aggra-
vates these disparities, especially for Black stu-
dents, who lose more than twice as much fund-
ing on average after noise is injected—possibly 
because Black students are more likely to at-
tend populous school districts where the costs 
of privacy deviations accumulate. But in less 
strong privacy settings (𝜖 ≥ 	1), disparities 
change very little from the status quo when pri-
vacy deviations are added (SM §7). 

To assess the impacts on non-categorical 
demographics, we also fit a generalized addi-
tive model (GAM) to the school district-level 
combined misallocations (𝜖 = 0.1) using dis-
trict population characteristics: population 
density, median household income, proportion 
White, proportion Hispanic, proportion renter-
occupied housing, and racial homogeneity (the 
Herfindahl-Hirschman index). Fitting the GAM 
on a sample of 100 trials, we find that districts 
with a median income between approximately 
$25,000 and $75,000 (about 56% of districts) 
can expect to lose out due to deviations, while 
most other districts gain (SM Fig. 6). The 40% 
most population-dense districts can also expect 
to lose funding. Conversely, districts that are 
less than 5% Hispanic tend to benefit from data 
and privacy deviations. 
 
SIMPLE REFORMS 
Simple changes to the formula—including addi-
tional provisions currently required by law—
can alleviate or aggravate disparities. For exam-
ple, adding the hold harmless provision re-
duces the standard deviation in misallocation 
(relative to the formula entitlement) but drasti-
cally increases disparities in outcomes for racial 
minorities (Fig. 2). Hold harmless prevents 
small districts from losing funding to data or pri-
vacy deviations, thereby increasing the tax on 
more populous districts and their non-White 
residents. The state minimum provision has a 
similar but smaller effect. Typically received by 
low population states, the state minimum 
slightly increases the amount of grants to low 
population districts, exacerbating disparities. 

This result illustrates a tension in evidence-
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based formula funding: because estimates for 
less populous geographies have higher vari-
ance in both privacy and data deviations rela-
tive to their populations and entitlements, 
measures that overwhelmingly benefit those 
small areas burden larger areas. We tested pro-
posed policy changes that could alleviate this 
tension (SM §6). We find that using multi-year 
averages with windows of increasing size de-
creases both overall misallocation and out-
come disparities compared to when we use the 
averaged poverty estimates as a baseline (SM 
Fig. 14 and Fig. 15). In general, using an average 
diminishes both data deviations and the pri-
vacy deviations required to achieve differential 
privacy, limiting both increases in expected 
funding for less populous districts and alleviat-
ing worst-case outcomes. Averaging may even 
be just as effective at stabilizing funding year-
to-year as the hold harmless provision (11). We 
also tested requiring repeated years of ineligi-
bility before disqualifying districts from fund-
ing, which did not change overall misalloca-
tion—likely because it permits more marginally 
wealthy districts to receive funding—but did 
reduce disparities (SM Fig. 14 and Fig. 15). 
 
PAYING FOR (PRIVATE) DATA 
Simple policy changes can alleviate disparities 
in the impact of statistical uncertainty, but  pre-
cisely targeted funding formulas will still have 
costs. Policymakers could ensure that no school 
district expects to lose money due to the un-
derlying data deviations quantified in our simu-
lation by assigning just $107 million (SD = $31 
million) in targeted payments to individual dis-
tricts that lose funding on average across 1,000 
simulations. The cost of stronger privacy (using 
our simplified mechanism) could be much less: 
to compensate districts for only the expected 
additional lost funding due to privacy devia-
tions, policymakers need only distribute an ex-
tra $41 million (SD = $3.8 million) for stronger 
privacy (𝜖 = 0.1), or $1.7 million (SD = 
$601,000) for less added privacy (𝜖 = 1) (SM 
§7). Still, a district’s actual loss in any given year 
often greatly exceeds its expected loss, espe-
cially for less populous districts. To compensate 
districts for both data and privacy deviations all 
but the worst 5% of our simulations, an addi-
tional $4.7 billion would be needed in the 
stronger privacy setting (𝜖 = 0.1). The cost is 
greater if policymakers wish to also compen-
sate for the many other forms of error not 
quantified here, or for a stronger privacy mech-
anism. 

It may be difficult to justify or legislate fund-
ing increases to just the districts expected to 
lose funding. Simply increasing the total federal 
appropriation to Title I (benefiting all districts 
unequally) by $135 million (the combined total 

expected loss) would only compensate for 
about half of expected losses. However, a $4.7 
billion increase (95% loss coverage) would com-
pensate for nearly all total expected losses and 
cut total 5% quantile misallocation roughly in 
half. The White House’s proposed 2022 alloca-
tion—a $20 billion increase, since reduced to 
$1 billion in Congress—would completely com-
pensate for privacy and data deviations in-
curred under the 2019 budget, but inequalities 
would remain. An overall budget increase 
would provide “no-penalty” compensation (10) 
for data and privacy deviations, but would not 
solve issues of relative equity (though budget 
increases do reduce the number of held harm-
less districts). 
 
DISCUSSION 
The addition of noise for differential privacy ex-
poses epistemic issues with formula design pre-
dicted by early work on census-guided federal 
funding even before differential privacy was 
first proposed (3, 11, 12, 13). In fact, our results 
suggest that the impacts of differential privacy 
relative to other sources of error in census data 
could be minimal. But current legislation holds 
few allowances for the impacts of statistical un-
certainty. Use of census data for the Title I for-
mula is mandated “unless the Secretary and 
the Secretary of Commerce determine that 
some or all of those data are unreliable or. . . 
otherwise inappropriate” (20 U.S.C. §6333). 
National Research Council studies, commis-
sioned by the Department of Education before 
ACS estimates were first incorporated in the 
SAIPE after 2005, warned against hard thresh-
olds and hold harmless provisions (12, 13)—but 
these provisions are still in effect. Recently, the 
Biden administration proposed a new Title I 
budget that includes funding to improve the 
poverty estimates—but there are still no 
measures to update the formula to handle un-
certain inputs. Simply acknowledging the ef-
fects of data error could improve future policy 
design for both formula funding and disclosure 
avoidance. 

Our findings come with limitations. Injected 
noise is just the tip of the iceberg: many other 
unquantified forms of statistical uncertainty—
including previous disclosure avoidance meth-
ods—affect poverty estimates in different ways 
(5). No confidentiality measures are directly ap-
plied to the SAIPE, but its inputs (mainly ACS 
and IRS data) may have hidden or unintended 
distortions due to swapping and other ad-hoc 
disclosure avoidance techniques (6). By replac-
ing other methods of disclosure avoidance, dif-
ferential privacy could even reduce the amount 
of overall misallocation due to uncertainty. 
Lacking an alternative source of poverty data, 
we do not assess the impacts of systematic 

biases, including under-counts of marginalized 
groups. Our analysis of the Title I allocation pro-
cess also leaves out several elements that could 
affect the applicability of our findings to the 
real-world distribution of funds, including small 
district appeals (20 U.S.C. §6333) and district-
level heterogeneity in use of funds. Temporal 
trends in funding, in combination with provi-
sions like hold harmless, could compound the 
effects of deviations (11). 

Data error—from under-counts to sam-
pling error to noise injection—will always affect 
evidence-based policy to some degree. In 2017, 
316 federal spending programs relied on U.S. 
census data to distribute over $1.5 trillion in 
federal funding across states, cities, and school 
districts (15). Uncertainty in census data—in-
cluding intentionally-added error for privacy—
will incur costs for stakeholders in those pro-
grams. But, at least the quantifiable portion of 
those costs can be mitigated with uncertainty-
aware policy design and budget increases—an 
avenue for compromise between targeted pol-
icy, equity, and also additional privacy. 
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Fig. 1. Expected sum of lost entitlements in basic, concentration, and targeted grants over 1,000 trials—with quantifiable data error, or data deviations, 
alone (purple) and with the addition of injected noise for privacy, or privacy deviations (purple plus orange). Noise is injected with the ε-differentially 
private Laplace mechanism. The margins of error at 99% confidence are too small to be depicted—less than $4 million for all three bars. Note that for 
𝜖 = 1.0, the additional funding loss due to privacy deviations falls within the 90% margin of error for the impact of data deviations alone. 
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Fig. 2. Expected misallocation borne by the average formula-eligible child in a given census racial group nationwide (assuming each child in a district is affected by 
misallocation equally). Specifically, bars depict the nationwide sum of each district’s misallocation multiplied by the proportion of respondents of a given census 
single race category in that district, divided by the total nationwide number of eligible children of that race (SM §2). Averaged over 1,000 trials. The colored bar 
and point indicate the race-weighted misallocation due to data deviations (data error) alone, with an error bar spanning a 90% normal confidence interval for this 
quantity. The black-outlined bar indicates the race-weighted misallocation due to combined data deviations and privacy deviations (noise injected for privacy, 
drawn from Laplace mechanism𝜖 = 	1.0). The additional impact of privacy deviations is significant (p < 0.01) for all groups, according to a two-sample z-test. 
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